
Eur. Phys. J. B 39, 5–17 (2004)
DOI: 10.1140/epjb/e2004-00164-3 THE EUROPEAN

PHYSICAL JOURNAL B

Structural, electronic, and optical properties of beryllium
monochalcogenides

C.M.I. Okoyea

Department of Physics and Astronomy, University of Nigeria, Nsukka, Nigeria

Received 26 September 2003
Published online 18 June 2004 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Abstract. The results of first-principles theoretical study of the structural, electronic and optical prop-
erties of beryllium monochalcogenides BeTe, BeSe and BeS, performed using the full potential linearized
augmented plane wave (FP-LAPW) method are presented. The calculated structural parameters and band
gaps compare very well with previous theoretical results. The trends of the band gap pressure coefficients
and volume deformation potentials for these II-VI compounds are investigated. The linear pressure coeffi-
cients for the Γ−X and Γ − Γ band gaps increase with decrease in anion atomic weight. The dependence
of the direct and indirect band gaps on the relative change of lattice constant are found to follow almost
the same type of trends in each of these compounds. The volume deformation potential (aα

v ) for the di-
rect (α = Γ − Γ ) and indirect (α = Γ − L) gaps are positive, but negative for the indirect (Γ − X) gap.
Furthermore, aα

v , for α = Γ −X transitions decreases with increase in anion atomic number whereas aΓ−Γ
v ,

increases. The optical properties have also been calculated. From the reflectivity spectra, the compounds
will be useful for optical applications. The variation of the band gaps with respect to the application of
pressure and the origin of some of the peaks in the optical spectra are discussed in terms the calculated
electronic structure.

PACS. 71.15.Ap Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods,
ASA, linearized methods, etc.) – 71.15.Mb Density functional theory, local density approximation, gradient
and other corrections – 71.20.Nr Semiconductor compounds

1 Introduction

The beryllium monochalcogenides BeTe, BeSe and BeS
are II-VI compounds which crystallize at low pressure
in the four-fold coordinated zinc-blende structure. Apart
from BeO and MgTe, which crystallize in the hexagonal
wurzite structure, all the other group-IIa chalcogenides
adopt the cubic rocksalt structure. A distinguishing fea-
ture in the beryllium compounds is that the cations (Be
ions) are extremely small as compared to the anions except
BeO [1]. This leads to an excess of the critical ratio of ionic
radii, 4.45, for the zincblende structures in all three Be
compounds; BeS, BeSe and BeTe. Thus, unlike other IIa-
VI compounds which are ionic, Be chalcogenides exhibit a
high degree of covalent bonding with the Philips ionicities
ranging from 0.169 in BeTe to 0.312 in BeS [2]. The beryl-
lium monochalcogenides are semiconductors with indirect
fundamental band gap associated with Γ −X transitions.
Also, BeS has high hardness while BeTe is a small gap
semiconductor. These interesting properties make them
potentially useful for technological applications. There-
fore, there is renewed interest in these compounds which
could be used in building green and blue light emitting
electro-optical devices [3].
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To date, probably as a result of their very high toxic
nature which makes it difficult to obtain them as single
crystals or epitaxial layers, only few experimental stud-
ies [4–6] have been performed on these compounds and
consequently, only a few theoretical studies of these com-
pounds are available in the literature [9–15]. In addition,
the band gap pressure coefficients of these compounds
are not well-known. The only available theoretical stud-
ies [12,13] were performed using first-principles pseudopo-
tential calculations.

The first theoretical study on these compounds were
performed by Stukel [9]. He used Slater’s local-exchange
potential approach to perform a non-relativistic self-
consistent calculation of the band structure and dielectric
function of BeTe, BeSe and BeS. This was followed by
Sakar and Chatterjee [10] who used the composite wave
variational version of the augmented plane wave (APW)
method in conjunction with the linear combination of
atomic orbitals (LCAO) interpolation scheme to compute
the energy band structure and joint density of states of the
compounds at various symmetry points and axes of the
Brillouin zone. Subsequently, Munoz et al. [11] calculated
the band structure and relative stability of high tem-
perature phases using a first principles pseudopotential
method based on density functional formalism and local
density approximation (LDA). Van Camp and Van Doren



6 The European Physical Journal B

[12] also used density functional theory together with
pseudopotential technique to study the ground-state
properties and structural phase transitions of beryllium
sulphide. The work of Gonzalez-Diaz et al. [13] employed
the first-principles pseudopotential method based on the
density functional theory and used the Cerperly Alder
form of the local density approximation for the exchange-
correlation as parametrized by Perdew and Zunger.
Fleszar and Hanke [14] employed the ab initio GW-
approach to study the band structure of the compounds.
The energy gaps they obtained are in better agreement
with available experimental data than the results of some
previous theoretical results [11–13]. In a more recent
study, Benosman et al. [15], used the LAPW method
employing the local density approximation for exchange
and correlation to study the structural and electronic
properties of BeS. The discrepancy could be attributed
to the LDA problem of underestimation of the energy gap.

It has been demonstrated recently that due to the
high degree of covalent bonding and bond energy which
should entail a lattice hardening and slower degradation
with time, interest in the beryllium compounds have been
renewed. However, among their optical properties, only
the dielectric function have been properly studied. The
technique of spectroscopic ellipsometry (SE) facilitates
the direct determination of the complex dielectric func-
tion ε = ε1 + iε2 and gives both the real and imaginary
parts of the dielectric function without having to employ a
Kramers-Kronig transformation. Such measurements have
recently been performed by Wilmers et al. [7,8] in the ul-
tra violet (UV) and vacuum ultra violet (VUV) range. To
this end, we shall use the SE measurements to evaluate
how well our theoretical approach successfully accounts
for the dielectric function and other optical properties. At
the moment there are no first-principles studies of most
of the optical properties. of zincblende beryllium chalco-
genides. As such, our study will help provide a theoreti-
cal data base for these compounds. In the present study,
the electronic structure and optical properties of beryl-
lium chalcogenides BeTe, BeSe and BeS in the zincblende
structure are calculated using full-potential linearized aug-
mented plane wave (FP-LAPW) method within the den-
sity functional formalism using the generalized gradient
approximation (GGA). It is known [16] that the GGA has
stronger theoretical foundation because it accounts specif-
ically for density gradients that are neglected in local den-
sity approximation (LDA), and does so in a way that satis-
fies several exact constraints in the form of the exchange-
correlation energy functional. It is therefore appropriate
to use GGA in this study employing a full-potential elec-
tronic structure method. The paper is organized as fol-
lows: Section 2, briefly describes the computational de-
tails regarding the methods used in our calculation of the
electronic and optical properties. In Section 3, the FP-
LAPW results for the structural properties, band struc-
ture, band gap pressure coefficient, and optical properties
are presented and compared with available experimental
data and other theoretical calculations. Finally, conclu-
sions are given in Section 4.

2 Method of calculation

We will study the structural, electronic and optical prop-
erties of zincblende BeTe, BeSe and BeS using the
WIEN97 package [17]. This program employs a scalar
relativistic full-potential linearized augmented plane
wave (FP-LAPW) method with correlations and exchange
effects treated using the generalized gradient approxima-
tion (GGA) of Purdue, Burke and Ernzenhof [18] within
the density functional theory [19]. The package employs
a basis set achieved by dividing the unit cell into non-
overlapping atomic spheres (centered at the atomic sites)
and an interstitial region. In the atomic sphere, a linear
combination of radial functions times spherical harmonics
is used and in the interstitial region, a plane wave ex-
pansion is augmented by an atomic-like function in every
atomic sphere. This approach has been extensively tested
and is among the most accurate methods for performing
electronic structure calculations for crystals. In our cal-
culations, the sphere radii of Be, Te, Se and S have been
chosen as 1.5, 2.3 2.0 and 1.9 atomic units respectively.
Within these spheres, the charge density and potential
are expanded in terms of crystal harmonics. The Brillouin
zone integrations have been carried out with a total of
30k-points in the irreducible Brillouin zone. The calcula-
tions are iterated to self-consistency with specified charge
convergence criterion and parameter RMT Kmax (where
RMT is the atomic sphere radii and Kmax is the intersti-
tial plane wave cut-off) was set to 8.0.

The pressure dependence of the energy gap for
the beryllium chalcogenides were calculated using the
following equation [20]:

(
∂Eg

∂P

)
T

=
(

∂Eg

∂V

)
T

(
∂V

∂P

)
T

= − V0
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∂V

)
T
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The value of (∂Eg/∂V )T was obtained directly from the
energy gap versus volume calculations, and the value
of (∂V/∂P )T was obtained from the compressibility
relationship:

K =
1

B0
= − 1

V0

(
∂V

∂P

)
T

(2)

where V0 is the equilibrium volume and B0 is the theo-
retical bulk modulus at the equilibrium volume. The the-
oretical bulk modulus used in this study is calculated as
described in Section 3.1.

For the calculation of the optical properties, a dense
mesh of uniformly distributed k-points is required. Hence,
the Brillouin zone integration was performed using the
tetrahedron method with many more k-points in the
irreducible part of the Brillouin zone without broadening.
The dielectric function

ε(ω) = ε1(ω) + iε2(ω) (3)

is known to describe the optical response of the medium
at all photon energies E = �ω. In this study, the
imaginary part of the dielectric function is given as in
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Table 1. Calculated lattice constant (a0), bulk modulus (B0), and first pressure derivative of bulk modulus (B
′
0) for beryllium

chacogenides, BeTe, BeSe and BeS. Results are compared with available experimental data and previous calculations.

BeTe Lattice constant (Å) B0 (GPa) B
′
0

Present study 5.663(a0) 57.66 6.21
Experiment(Used in this study) 5.6271

5.6172 67.02

Other calculations 5.5313 70.03

5.6252 66.82

5.6312 68.22 3.42

BeSe
Present study 5.178(a0) 74.97 4.02
Experiment (used in this study) 5.1441

5.1392 92.24

Other calculations 5.0372 92.22 3.72

5.0373 98.03

BeS
Present study 4.887(a0) 92.23 3.70
Experiment (used in this study) 4.8631

4.8652

Other calculations 4.7452 116.03

4.7452 113.42 3.52

4.7735 101.95 3.715

1 See reference [14], 2 see reference [11], 3 see reference [13], 4 see reference [1], 5 see reference [12].

reference [21] by

ε2(ω) =
(

4π2e2

m2ω2

) ∑
i,j

∫
〈i|M |j〉2fi (1 − fj)

× δ (Ef − Ei − ω) d3k (4)

where M is the dipole matrix, i and j are the initial and
final states respectively, fi is the the Fermi distribution
function for the ith state, and Ei is the energy of
electron in the ith state. The real part (ε1 (ω)) of the
dielectric function can be extracted from the imaginary
part using the Kramers-Kronig relation in the form [21,22]

ε1 (ω) = 1 +
2
π

P

∫ ∞

0

ω
′
ε2(ω

′
)dω

′

(ω′2 − ω2)
(5)

where P implies the principal value of the integral.
The optical reflectivity spectra are derived from

the Fresnel’s formula for normal incidence assuming an
orientation of the crystal surface parallel to the optical
axis using the relation [21,23]

R(ω) =

∣∣∣∣∣
√

ε(ω) − 1√
ε(ω) + 1

∣∣∣∣∣
2

. (6)

while the electronic energy-loss function (–Im(1
ε )) is given

by [22,24,25]

−Im
(

1
ε

)
=

ε2(ω)
ε2
1(ω) + ε2

2(ω)
. (7)

We calculate the absorption coefficient I(ω) and the real
part of optical conductivity Re[σ(ω)] using the following

expressions [21,23]:

I(ω) = 2ω

{√
ε2
1(ω) + ε2

2(ω) − ε1(ω)
2

}1/2

(8)

Re[σ(ω)] =
ωε2

4π
. (9)

Also, the optical spectra such as the refractive index,
n(ω), and the extinction coefficient, k(ω), are calculated
in terms of the components of the complex dielectric
function as follows [23–25]:

n(ω) =

{
ε1(ω)

2
+

√
ε2
1(ω) + ε2

2(ω)2

2

}1/2

(10)

k(ω) =

{√
ε2
1(ω) + ε2

2(ω)
2

− ε1(ω)
2

}1/2

. (11)

3 Results and discussion

3.1 Structural parameters

The equilibrium lattice constant (a0) has been determined
by calculating the total energy at a number of lattice pa-
rameters around the experimental value within the FP-
LAPW method in scalar relativistic calculations (without
spin-orbit coupling effects). To achieve this, we have chose
the most recent values of the lattice constants [14]. Fit-
ting of the Murnaghan equation of state [26] to the total
energies versus lattice parameters, yields the equilibrium
lattice parameter (a0), bulk modulus, B0, and the pressure
derivative of the bulk modulus, B

′
0. These are tabulated
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Fig. 1. Calculated relativistic electronic band structures of (a) BeTe (b) BeSe and (c) BeS. The valence band maximum is
at zero.

Fig. 2. Calculated electronic band structures of BeTe. (a) Semirelativistic and (b) relativistic. The valence band maximum is
at zero.

in Table 1. It is seen that the structural parameters are in
good agreement with results of previous studies and exper-
iment. The small overestimation in the equilibrium lattice
constant is a common feature with GGA calculations.

3.2 Band structure and density of states

Electronic band structure of zincblende beryllium chalco-
genides BeTe, BeSe and BeS based on self consistent scalar

relativistic FP-LAPW calculations in which the exchange
and correlation were treated in the GGA along the sym-
metry lines of the face centered cubic Brillouin zone are
plotted in Figure 1. It shows the relativistic (including
spin-orbit coupling coupling) band structures of BeTe,
BeSe and BeS while Figure 2 compares the band struc-
tures of BeTe calculated (a) scalar-relativistically and (b)
fully relativistically. The calculations were performed at
the experimental value of the lattice constant. A compar-
ison of Figures 2a and 2b shows that the inclusion of spin
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Table 2. Calculated energy gaps at high symmetry points in BeTe, BeSe and BeS.

Energy-gap(eV)

Direct Indirect

a (Å) Γ → Γ X → X L → L Γ → X Γ → L

BeTe

Expt. 5.627 4.531 2.82, 2.73

This work 5.627 3.62 4.63 4.23 1.98 3.129

Previous study

5.627 1.621

2.894

2.61

3.685 1.815

3.686 1.806

BeSe

Expt. 5.144 5.557

This work 5.144 4.37 5.29 5.41 2.63 4.339

Previous study

5.478 3.614

4.726 2.396

BeS

Expt. 4.863

This work 4.863 5.65 5.74 6.46 3.13 5.437

Previous study

5.516 2.756

4.174

5.3979 2.8169

5.50310 2.84710

1 M. Nagelstraber, H. Droge, H.P. Steinruck, F. Fischer, T. Litz, A. Waag, G. Landwehr, A. Flesser, W. Hanke, Phys. Rev. B
58, 10394 (1998) and references therein; 2see reference [9]; 3R.G. Dandrea, C.B. Duke, Appl. Phys. Lett. 64, 2145 (1994); 4see
reference [9]; 5see reference [11]; 6see reference [13]; 7see reference [8]; 8see reference [14]; 9see reference [12]; 10see reference [15].

orbit coupling lifts the degeneracy in the valence band.
This is strongest in BeTe. The overall band profiles are
found to be in fairly good agreement with previous theo-
retical results. In all the cases, the valence band maximum
occurs at the Γ -point while the conduction band minimum
occurs at the X-point and these are accurately located by
our calculations. Thus the energy gap is indirect between
the top of the (anion p) valence band and the bottom of
the conduction band at the X-point. Note that the chalco-
gen p bands shift up in energy going from the sulphide to
the telluride. This is the normal behaviour related to the
increase of the lattice parameters, which was also found for
other II-VI compounds [27,28] The band gaps displayed
in Table 2 were deduced from the fully relativistic calcu-
lations. It is seen that the theoretically calculated results
are in fair agreement with previous studies [11,13]. How-
ever, the band gaps are on the whole underestimated in
comparison with the experimental results. This is typical
error arising due to the Kohn-Sham formalism and the
GGA approximation. The band gap problem is consid-
ered to arise due to lack of non-locality and energy de-
pendence in the exchange-correlation scheme used in the
density functional formalism [29].

We note that the order of the band gaps Eg(BeS) >
Eg(BeSe) > Eg(BeTe) is anomalous. The trend in II-VI
semiconductors is that the band gaps decrease monoton-
ically with the anion atomic number [27]. Furthermore,
the calculated valence band widths are 12.3 eV, 13.8 eV
and 13.63 eV for BeTe, BeSe and BeS respectively in good
agreement with previous studies [13,15]. The result shows
that the valence band width is maximum for BeSe. Show-
ing that the wave function is more localized for BeS than
for BeTe. This is in line with the usual trend in which the
valence band states become more localized as a material
becomes less covalent and more ionic, as it does when we
decrease the atomic number of the anion. It is also noticed
that the band gap between the lowest band (anion s band)
and the valence band is least in BeTe due to the higher
energy position of tellurium s band.

In Figure 3, we have displayed the total density of
states of the beryllium compounds BeTe, BeSe and BeS
calculated at the experimental lattice constant. We have
used the site and angular momentum decomposed den-
sity of states (not shown) to identify the character of
the band states for these compounds. It is seen that for
each compound, the bands above the zero of energy are
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Fig. 3. Total DOS for zincblende beryllium chalcogenides
BeTe, BeSe and BeS.

predominantly of anion and cation p-character but also
with some anion s and cation-d content. Just below the
zero of energy, the bands have chalcogen p-character. The
lower valence states are formed by mixture of Be-s and
chalcogen-p states. The lowest band in the figures is nearly
exclusively of chalcogen atom s character.

4 Pressure dependence of energy bands

We are aware that the GGA within the density functional
formalism, underestimates the band gaps compared with
experiment [30,31]. However, despite this shortcoming of
the GGA, the pressure derivatives or the deformation po-
tentials of band gaps in semiconductors are accurately cal-
culated in the GGA(or LDA) and do not depend on the
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Fig. 4. Theoretical dependence of the (a) indirect (Γv − Xc)
band gap, (b) (Γv−Lc) and (c) direct (Γv−Γc) of for beryllium
chalcogenides (a) BeTe (b) BeSe and (c) BeS as a function of
atomic volume. The legend for (a) also applies to (b) and (c).

type or functional form of the exchange-correlation poten-
tial [30,32,33]. As such, we have investigated the pressure
dependence of the energy gap for beryllium chalcogenides
using the FP-LAPW method within the generalized gra-
dient approximation. In order to achieve this, we first de-
termine the volume dependence of the energy gaps of the
compounds. These are shown in Figure 4. The volume de-
pendence is obtained from the slope of the linear region
which lies below the equilibrium volume. We have fitted
the region below the equilibrium volume with linear func-
tion following the procedure in reference [20]. The straight
lines are drawn using the values of the linear fit. The slope
dEg

dV of the lines are given in Table 3. Using these values
as well as the equilibrium volume V0 and theoretical bulk
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Table 3. Calculated values of the pressure coefficients (
dEg

dV
) and and volume deformation potentials (

dEg

d ln V
) for beryllium

chacogenides, BeTe, BeSe and BeS. Results are compared with available experimental data and previous calculations.

dEg

dV
(meV(Bohr)−3)

dEg

dP
(meV(GPa)−1)

dEg

d ln V
(eV)

BeTe

Γ → X -gap 8.65 –45.96 2.65

Γ → L -gap –8.50 45.155 –2.604

Γ → Γ -gap 3.02 –16.04 9.25

Previous study Γ → X [13] –24.06

BeSe

Γ → X -gap 11.979 –37.42 2.80

Γ → L -gap –15.80 49.358 –3.701

Γ → Γ -gap 3.193 –9.97 7.48

Previous studyΓ → X [13] –20.43

BeS

Γ → X -gap 13.24 –28.10 3.15

Γ → L -gap –17.50 37.143 –3.425

Γ → Γ -gap 3.41 –7.24 6.68

Previous study Γ → X [12] –21.7

Previous study Γ → X [13] –16.62

Previous study Γ → L [12]

Previous study Γ → Γ [12] –8.87

modulus B0 in equation (1), the band gap pressure coeffi-
cients are determined. These are also tabulated in Table 3.
It is found that in Figure 4, the indirect (Γ−X) and direct
(Γ − Γ ) band gaps (Eg) generally decrease with increase
in pressure, thus BeX (X = Te, Se, S) have negative pres-
sure coefficient (

dEα
g

dP ) (α = Γ−X and Γ −Γ ) (see Tab. 3,
col. 3). On the other hand, the indirect (Γ −L) band gap
(Fig. 4b) increases with increase in pressure giving rise to
positive band gap pressure coefficient. For both the indi-
rect and direct band gaps, the magnitude of the pressure
coefficient decreases with increase in anion atomic num-
ber. Our results are in good agreement with the available
theoretical results [12,13].

It is interesting to note the difference between the
variation of the indirect and direct band gaps for vol-
umes greater than the calculated equilibrium volumes.
The band gaps deviate from being linear as displayed in
Figure 4 above the equilibrium volume. The indirect band
gaps (Figs. 4a and 4b) show smaller deviation compared
to those of direct band gaps displayed in Figure 4c. The di-
rect band gaps decrease abruptly for volumes larger than
the equilibrium volume of the compound.

We can also account for the effect of changes in volume
on the band gap by calculating the volume deformation
potential (aα

v ) using [33]

aα
v =

dEα
g

d ln V
= −B0

dEα
g

dP
, (12)

where B0 is the bulk modulus. The results are given
in Table 3. We note that for the beryllium compounds,

dEα
g

d ln V increases as the anion atomic number decreases for

α = Γ−X indirect band gap while for the direct α = Γ−Γ
band gap, the deformation potential decreases with de-
crease in anion atomic number. This means that as the
ionicity of the compound increases from BeTe to BeS, the
volume deformation potential for the indirect (Γ−X) and
direct (Γ − Γ ) band gaps increases and decreases respec-
tively.

Another way of representing the effect of pressure on
the band gap is through the use of a second-order polyno-
mial fit [34–36] to the calculated values with

Eα
g (a) = Eα

g (a0) + B

(−∆a

a0

)
+ C

(−∆a

a0

)2

(13)

where ∆a is the change in the lattice constant, a0 the
equilibrium lattice spacing and α is either the indirect
Γ − X , Γ − L or direct Γ − Γ band gap. The val-
ues of the coefficients obtained from this quadratic fit
are tabulated in Table 4. Figures 5a–5c show the calcu-
lated variation of the band gaps with the relative vari-
ation in lattice constant. It is seen that theoretically,
the indirect band gap (Γ − X) decreases with increase
in the relative change of the lattice constant for all the
compounds since both coefficients B and C are nega-
tive (see Tab. 4). This is in agreement with the varia-
tion of the band gap with lattice constant deduced for
GaAs [36]. Contrary to this behaviour, is that exhibited
by the gap due to the Γ −L transition. This gap increases
with the increase in the relative variation of in the lat-
tice constant (Fig. 5b) for all the beryllium monochalco-
genides. An interesting response to the application
of pressure is exhibited by the direct Γ − Γ band gap.
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Table 4. Coefficients obtained from least-square fits with
E0(a) = E0(a0)+B(−∆a

a0
)+C(−∆a

a0
)2 to the calculated values

of the indirect Γ → X, Γ → L and direct Γ → Γ band gaps of
beryllium chacogenides, BeTe, BeSe and BeS.

E0(aexpt) (eV) B (eV) C (eV)

BeTe

Γ → X -gap 2.027 –7.087 –21.897

Γ → L -gap 3.048 8.199 7.311

Γ → Γ -gap 3.636 8.889 –249.523

BeSe

Γ → X -gap 2.675 –6.173 –22.009

Γ → L -gap 4.258 10.554 11.860

Γ → Γ -gap 4.224 18.496 –85.780

BeS

Γ → X -gap 3.149 -6.420 –26.581

Γ → L -gap 5.401 10.369 –8.311

Γ → Γ -gap 5.656 10.377 –366.516

This gap initially increases with the relative variation in
the lattice constant, before it shows a down turn after
reaching a peak value. This is more prominent in BeS and
BeTe. This trend, (also seen with similar calculations us-
ing local density approximation), is contrary to the linear
variation reported in reference [15], although they used a
different experimental lattice constant.

From our band structure studies, the behaviour of the
indirect (Γ − X , Γ − L) and direct (Γ − Γ ) band gaps
can be understood in terms of the relative changes in the
energies of the various bands as pressure is varied. It is
found that in these compounds, the indirect band(Γ −X)
gap decreases with increase in pressure due to the lower-
ing in energy of the conduction band (Be p and chalco-
gen deg) at that point. On the other hand, the Γ −L gap
increases as the pressure is increased because energy of
the conduction band (anion s) at the L point increases.
The two indirect band gaps therefore respond differently
to application of pressure. For the direct (Γ −Γ ) band gap
pressure dependence, there is a kink in the data associated
with the application of pressure in all the three materials.
This probably arises from band mixing among lower con-
duction bands at the Γ -point when the lattice constant
is changed. It is seen that the decrease in the band gap
with increase in pressure arises as a result of the closing of
the gap between the lowest conduction band and the next
higher doubly degenerate band at the Γ point leading to
triple degeneracy. On further increasing the pressure, the
triple degeneracy at the Γ point on the conduction band
breaks, giving rise to a doubly degenerate(lower) and a sin-
gle next higher band at this point. As this gap increases,
a reduction in the direct Γ − Γ band gap with increase
pressure is observed.
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Fig. 5. Theoretical dependence of the (a) indirect (Γv − Xc)
band gap, (b) (Γv −Lc) and (c) direct (Γc − Γc) for beryllium
chalcogenides: (a) BeTe (b) BeSe and (c) BeS as a function of
relative variation of lattice constant. The lines represent the
the quadratic fit to the theoretical values using parameters in
Table 4. The legend for (a) also applies to (b) and (c).

4.1 Optical properties

We have used equations (4–11) to calculate the optical
properties scalar relativistically in this study. The calcu-
lated spectra have been rigidly shifted in order to correct
for the DFT underestimation of the band gaps. We per-
form the scissors operator by an upward shift in energy
of ε2 by 0.366 eV, 0.218 eV for BeTe and BeSe. The es-
timates of the shift were obtained by ensuring that the
maxima of the calculated imaginary part of the dielectric
function coincide with the maxima of the measured spec-
tra [38]. For BeS, no scissors shift was performed due to
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Fig. 6. Calculated real parts of dielectric function for (a) BeTe,
(b) BeSe and (c) BeS.

non availability of experimental measurements. The op-
tical spectra calculated for the three compounds are dis-
played in Figures 6–12. In Figures 6 and 7 are the real,
(ε1) and imaginary, (ε2) parts of the dielectric function
in the energy range 0 and 30.0 eV. Generally, It is seen
that the dielectric spectra for the beryllium chalcogenides
appear similar. The real part of the dielectric function
ε1(ω) are shown in Figure 6. It is interesting to note that
the first peak in ε1(ω) coincides with the transition at
the point L between the top of the valence band and the
bottom of the conduction band. The major difference be-
tween the ε1(ω) spectra of the compounds appear to occur
in the region where ε1(ω) is negative with BeS exhibit-
ing the least of sharp structures in the region. It is found
that the peak intensity in the dielectric function is highest
in BeSe. and occur at 4.62 eV, 6.57 eV and 6.03 eV for
BeTe, BeSe and BeS respectively. These correspond to di-
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Fig. 7. Calculated imaginary parts of dielectric function for
(a) BeTe, (b) BeSe and (c) BeS.

rect interband transitions which originate from the top of
the valence band at the L-point to the lowest conduction
band. The imaginary part of the dielectric function for
the compounds are also shown in Figure 7. The onset of
the absorption edge in ε2 occurs at 4.01 eV, 4.60 eV and
5.65 eV in BeTe, BeSe and BeS. These correspond to the
direct optical band gap(Γv → Γc). In all the compounds,
their is a sharp increase in the slope of ε2 beginning at the
optical band gap and rising to the main peak. The global
peak in ε2 occurs at 5.44 eV, 6.50 eV and 6.98 eV for BeTe,
BeSe and BeS respectively. This is followed by small struc-
tures at 7.31 eV and 7.64 eV in BeSe and BeS respectively.
These small structures arise due to direct transitions from
the top of the valence band at the L-point to the next
higher conduction band (L3v → L3c) in the compounds.
Our calculated ε2 spectra compare very well with those of
Stukel [9].
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Fig. 8. Calculated reflectivity of (a) BeTe, (b) BeSe and (c)
BeS.

In Figure 8, we exhibit the calculated reflectivity spec-
tra for the compounds using equation (6). We note that
in the three compounds, the reflectivity spectra is small
in the low energy region indicating that interband tran-
sitions do not occur in the far infrared (IR) spectrum in
these large band gap semiconductors. Hence, they reflect
more from the ultra violet region especially in BeSe and
BeS. On the whole, the reflectivity spectra obtained for
the three compounds show that the reflectivity is on the
average generally between 9% and 60% up to 12 eV for
BeTe and 22 eV for both BeSe and BeS, except for some
few small peaks. Beyond these energies, the reflectivity
drops sharply. The behavior of the reflectivities between
∼7–23 eV for BeSe and BeS and between 5–12 eV for
BeTe, make the compounds particularly good for applica-
tions in visible and ultra violet region.
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Fig. 9. Calculated electron energy-loss function of (a) BeTe,
(b) BeSe and (c) BeS.

The electron energy loss-function for beryllium chalco-
genides BeTe, BeSe and BeS are displayed in Figure 9. The
spectra displayed in Figure 9 show that the loss function
for BeTe is different from those of BeSe and BeS because
of the wider width of the peak. This function is usually
large at the plasmon energy whose position corresponds to
ε1(ω) = 0, provided ε2(ω) is reasonably smooth in these
regions [39,40]. In these compounds, at around 10.8 eV,
20.8 eV and 21.1 eV for BeTe, BeSe and BeS respectively,
the energy loss spectra exhibit a large peak.

The calculated linear absorption spectra are plotted in
Figure 10 for BeTe, BeSe and BeS. The general profile of
their frequency dependence are similar especially for BeSe
and BeS. For all the compounds the onset of absorption
involves a sharp increase in the spectra at energies corre-
sponding to the fundamental optical gap. This indicates
that BeTe, BeSe and BeS have the same mechanism of
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Fig. 10. Calculated linear absorption coefficient of (a) BeTe,
(b) BeSe and (c) BeS.

optical transition at these energy positions. In the BeTe
absorption spectra, after attaining the peak, there is a
relatively sharper decrease than in BeSe and BeS. The
spectra also exhibit a unique shoulder between 14.8 and
17.5 eV. This might be due to the presence of anion d
electrons in the conduction band structure. This feature
does not appear in the other compounds (BeSe and BeS).

In Figure 11, the calculated real part of the optical
conductivity in beryllium chalcogenides BeTe, BeSe and
BeS are displayed. After a start of a smooth and zero
conductivity, we obtain a sharp increase that reaches a
peak at 5.4 eV, 5.42 eV and 6.98 eV for BeTe, BeSe and
BeS respectively, before dropping rapidly. It is known that
the real part of optical conductivity of a system is directly
proportional to the product of energy and the imaginary
part of the dielectric function ε2. As such, the origin of the
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Fig. 11. The theoretical real part of optical conductivity of
(a) BeTe, (b) BeSe and (c) BeS.

structures in the imaginary part of the dielectric function
also explain those of the optical conductivity. The relative
amplitudes of the structures scale as ωε2.

In Figures 12a–12c, the calculated refractive index
(solid line) and the extinction coefficient (dotted lines)
are plotted. The general profiles of the refractive index
and extinction coefficient spectra of the compounds are
quite similar. However, the energy at which the refrac-
tive index and extinction coefficient cross in all the com-
pounds increases from BeTe to BeS. The refractive index
and extinction coefficient spectra of the compounds have
resonance in the ultra violet which corresponds to the in-
terband transitions. We also note that the refractive index
of all the compounds lie between 1.9 and 2.5 in the far in-
frared region, while in the hard ultra violet region, the
refractive index has normal dispersion since it increases
with energy in the transparency region (1.5–3 eV).
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Fig. 12. The refractive index (continuos line), extinction co-
efficient (dotted line) of (a) BeTe, (b) BeSe and (c) BeS.

5 Conclusions

We have used the generalized gradient approximations
within the full potential linearized augmented plane wave
method to study the structural, electronic and optical
properties of zincblende beryllium monochalcogenides,
BeTe, BeSe and BeS. Our results show that generally the
effect of the increase in the anion charge of these com-
pounds to the band structure, is to decrease the band gaps
as well as the valence band width. Our investigation of
the effect of pressure on the direct and indirect band gaps
of the compounds show that they respond differently to
the application of pressure. The direct and indirect band
gap pressure coefficient for the compounds are all negative
and in both cases decrease with increase in anion atomic
number. Also, we found that for the direct (Γ − Γ ) band
gap, the deformation potential decreases as the chalcogen

atomic number decreases while it increases with decrease
in anion atomic number for the indirect band gap. The
results of our calculations of the dielectric functions com-
pares very well with available experimental measurements.
The reflectivity is found to have a maximum of about 60%
in all the compounds. The agreement between our calcula-
tions and the ellipsometry measurements for the dielectric
function gives credence to the results on the other calcu-
lated optical properties for which no experimental data
are available.
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